Speech Reconstruction by Sparse Linear Prediction

نویسندگان

  • Ján Koloda
  • Antonio M. Peinado
  • Victoria E. Sánchez
چکیده

This paper proposes a new variant of the least square autoregressive (LSAR) method for speech reconstruction, which can estimate via least squares a segment of missing samples by applying the linear prediction (LP) model of speech. First, we show that the use of a single high-order linear predictor can provide better results than the classic LSAR techniques based on shortand long-term predictors without the need of a pitch detector. However, this high-order predictor may reduce the reconstruction performance due to estimation errors, especially in the case of short pitch periods, and non-stationarity. In order to overcome these problems, we propose the use of a sparse linear predictor which resembles the classical speech model, based on shortand long-term correlations, where many LP coefficients are zero. The experimental results show the superiority of the proposed approach in both signal to noise ratio and perceptual performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast algorithms for high-order sparse linear prediction with applications to speech processing

In speech processing applications, imposing sparsity constraints on high-order linear prediction coefficients and prediction residuals has proven successful in overcoming some of the limitation of conventional linear predictive modeling. However, this modeling scheme, named sparse linear prediction, is generally formulated as a linear programming problem that comes at the expenses of a much hig...

متن کامل

Sparse auto-associative neural networks: theory and application to speech recognition

This paper introduces the sparse auto-associative neural network (SAANN) in which the internal hidden layer output is forced to be sparse. This is achieved by adding a sparse regularization term to the original reconstruction error cost function, and updating the parameters of the network to minimize the overall cost. We show applicability of this network to phoneme recognition by extracting sp...

متن کامل

Sparsity in Linear Predictive Coding of Speech

This thesis deals with developing improved techniques for speech coding based on the recent developments in sparse signal representation. In particular, this work is motivated by the need to address some of the limitations of the wellknown linear prediction (LP) model currently applied in many modern speech coders. In the first part of the thesis, we provide an overview of Sparse Linear Predict...

متن کامل

An efficient solution to sparse linear prediction analysis of speech

We propose an efficient solution to the problem of sparse linear prediction analysis of the speech signal. Our method is based on minimization of a weighted l2-norm of the prediction error. The weighting function is constructed such that less emphasis is given to the error around the points where we expect the largest prediction errors to occur (the glottal closure instants) and hence the resul...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012